Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space
نویسندگان
چکیده
Abstract This paper studies the problem of construction of the optimal quadrature formula in the sense of Sard in (2) 2 ( 1,1) L − S.L.Sobolev space for approximate calculation of the Cauchy type singular integral. Using the discrete analogue of the operator 4 4 / d dx we obtain new optimal quadrature formulas. Furthermore, explicit formulas of the optimal coefficients are obtained. Finally, in numerical examples, we give the error bounds obtained for the case 0.02 h = by our optimal quadrature formula and compared with the corresponding error bounds of the quadrature formula (15) of the work [26] at different values of singular point t . The numerical results show that our quadrature formula is more accurate than the quadrature formula constructed in the work [26].
منابع مشابه
An effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملApproximating the singular integrals of Cauchy type with weight function on the interval
It is known that the solutions of characteristic singular integral equations (SIEs) are expressed in terms of singular integrals of Cauchy type with weight functions w (x) = (1 + x)ν (1-x)μ, where ν = ± frac(1, 2), μ = ± frac(1, 2). New quadrature formulas (QFs) are presented to approximate the singular integrals (SIs) of Cauchy type for all solutions of characteristic SIE on the interval [-1, ...
متن کاملApproximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کامل